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Abstract—We report on the design and measurement of mon-
olithic 155- and 213-GHz quasi-optical oscillators using All-
nAs/GaInAs/InP HEMT’s. These results are believed to be the
highest frequency three-terminal oscillators reported to date. The
indium concentration in the channel was 80% for high sheet
charge and mobility. The HEMT gates were fabricated with
self-aligned sub-tenth-micrometer electron-beam techniques to
achieve gate lengths on the order of 50 nm and drain-source
spacing of 0.25 ym. Planar antennas were integrated into the
fabrication process resulting in a compact and efficient quasi-
optical Monolithic Millimeter-wave Integrated Circuit (MMIC)
oscillator.

1. INTRODUCTION

HE POTENTIAL of AllnAs/GalnAs High Electron Mo-
Tbility Transistors (HEMT’s) on InP substrates has been
investigated extensively for low-noise and power applica-
tions at millimeter-wave frequencies (30-100 GHz), and the
recent developments in HEMT materials growth [1], layer
scaling [2], and electron-beam fabrication [3], have resulted
in the fabrication of the world’s highest cutoff frequency
(f:) transistors [4]. We have combined the AllnAs/GalnAs
technology with integrated antennas to build a millimeter-wave
quasi-optical oscillator. The design is based on the coplanar
waveguide (CPW)-fed quasi-optical slot oscillators which has
been investigated by Kormanyos [5], [6] and Moyer [7]. The
uniplanar circuit requires no via holes and no backing ground
plane and is compatible with the monolithic integration of high
speed transistors. With the uniplanar approach, it is possible to
put the InP oscillator on a high-resistivity silicon dielectric lens
(silicon and InP have similar dielectric constants). The sub-
strate lens simulates an infinite dielectric medium, eliminates
power loss to substrate modes and makes the pattern nearly
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uni-directional [8]. Perhaps, the most important advantage of
this approach is that the different designs at 150-550 GHz are
independent of the substrate height and can all be integrated
together on the same chip. This considerably reduces the
fabrication time and cost per oscillator unit. The slot antenna
impedance in this environment is accurately calculated using
the space domain integral equation technique [9], and will
not be discussed in this paper. Using this technique, we
have succeeded in building 155- and 213-GHz oscillators
while the maximum previously reported transistor oscillator
performance has been limited to 131 GHz [10].

II. MATERIALS DEVELOPMENT
AND OSCILLATOR FABRICATION

The epitaxial layers used in this work were grown in a
Riber 2300 molecular-beam epitaxy (MBE) system, typically
at a substrate temperature of 500°C, a growth rate of 600
nm/h, and a V/IIT beam equivalent pressure ratio of 40. Further
details of these standard growth conditions can be found in
[1]. Fig. 1 shows a diagram of the layer structure of the
MBE material. The growth of the delta-doped, strained layer
structures deviates from the standard conditions in several
ways. The first is a reduction of the substrate temperature
to 320°C, during and after the growth of the delta-doped
layer in order to minimize the surface segregation of silicon
atoms in AllnAs. By controlling the growth temperature in this
fashion, we are able to improve the abruptness of the silicon
profile and achieve an increase of approximately 20-30% in
electron transfer efficiency [4]. The second modification is
the use of a wider spacer thickness. In order to obtain a
high mobility using delta doping, we increased the spacer
thickness of the delta-doped structures from 2-6 nm. The last,
but most important, is a lower substrate temperature during the
growth of the pseudomorphic channel. We grew this layer at a
substrate temperature of 440°C, as opposed to the standard
500°C, to prevent three-dimensional nucleation and misfit
dislocation production. The resulting sheet charge and mobility
were approximately 2.7 x 10*2cm~™2 and 13000 cm?/v~2,
respectively.

We employed a self-aligned-gate (SAG) process first pro-
posed by Mishra et al. [12]. which consists of five levels:
1) alignment marks, 2) device isolation, 3) T-shaped gate
definition, recess, and metalization (Ti/Pt/Au), 4) ohmic def-
inition, metalization (AuGe/Ni/Au) with the T-shaped gate
serving as a shadow mask, and alloying, and finally, 5)

0018-9480/95$04.00 © 1995 IEEE
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Fig. 1. Layer structure of the InP MBE material.

Fig. 2. Cross-section of 50-nm T-shaped gate.

overlay. We defined the sub-0.1-pm gates in a bi-layer of
PMMA/P(MMA-MAA) electron-beam resist using a Phillips
EBPG-4 electron-beam lithography system operating at 50-kV
acceleration voltage. The resulting drain-to-source spacing is
approximately 0.25 pm. Fig. 2 shows the cross-section of a
50-nm T-shaped gate after the deposition of the self-aligned
ohmic metal. The addition of the ohmic metal reduces its
resistance from approximately 1500-1000 2/mm, which is
the lowest resistance ever reported for a 50-nm-long gate
[4]. Typical peak extrinsic transconductance for the final
wafer lot was approximately 1400 mS/mm for a 50-pm
device measured after all the MMIC fabrication steps, with
an associated extrinsic short-circuit current-gain extrapolated
cutoff frequency, fr, of approximately 340 GHz (Fig. 3). The
extrapolated maximum oscillation frequency (fmax) at —6
dB/octave for an intrinsic 50-pm device is 740 GHz.

The processing of the circuits begins with the ohmic con-
tacts, other than the device ohmics, which are defined by lifting
off AuGe-Ni-Au metallurgy. Second is the isolation implant,
used to define the active area of the transistors, achieved by
use of boron ions. Next is the self-aligned-gate (SAG) process,
which is described above, followed by the device ohmic step,
wherein the gate itself acts as a mask for the ohmic metal,
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Fig. 3. HEMT short-circuit current gain versus frequency. The measure-
ments are made to 50 GHz and extrapolated thereafter.
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Fig. 4. The fabricated InP 155-GHz MMIC oscillator. The slot antenna is to
the left. The dark areas outline the InP substrate.

also described in the previous section. Next is the perimeter
etch, where we etch down to the InP substrate everywhere
except in the device itself, to provide a very high resistance
dielectric for the slot antenna and the cpw transmission line.
DC biasing of the transistor is made possible by slits in
the ground plane which isolate the gate, drain and source
(see Fig. 4 for the completed MMIC oscillator). These slits
are capacitively bypassed to create an uninterrupted ground
plane for the RF circuit. Following that is the metal overlay,
which defines the device electrodes, the transmission lines, slot
antennas and the ground planes. Then, the capacitor dielectric
layer is formed. The dielectric material is 0.22 pm of silicon
monoxide (SiO). The post-metal fabrication step then defines
the top plates and, hence, the size of the capacitors. Finally,
the span metal step is used to fabricate the air-bridges from
the capacitors as well as the plated metal on the transmission
lines and ground plane.

III. OSCILLATOR DESIGN

The oscillator design follows the reflection amplifier ap-
proach presented in [12].. Computer optimization is applied
at the source and gate terminals to maximize the reflection
coefficient at the gate of the device which is connected to the
slot antenna. The antenna impedance is used as a parameter
in the oscillator design, and therefore the matching networks
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Fig. 5. Fitted small signal model for the scaled InP based HEMT with 0.05-um gate length and 10-pm gate width (see text).
TABLE I
DESIGN PARAMETERS FOR THE TWO SUCCESSFUL MONOLITHIC MILLIMETER-WAVE OSCILLATORS. THE VALUES Lg, ... ARE DEFINED IN FIG. 4
F* Lp ,Cp‘: Em 1, 1, I I 1/S,, r
(GHz) (mS) | (pm) | (pm) | (pm) | (pm) | (mag,ang) | (mag,ang)
150 High 10 239 | 164.5 | 230.5| 360 | 0.188, 164.4| 0.595, 164
500 High 16 | 107 | 86.5 | 71 70 | 0.323, -147 | 0.897, -146.5

are minimized. This results in an oscillator circuit that is
much smaller than a wavelength, typically 400 pum-square at
150 GHz and 100 pm-square at 500 GHz. All of the cpw
lines in the oscillator design have a center conductor width of
10 pm and 5 pwm gap giving an impedance of approximately
50 Q and an effective dielectric constant of 6.7 on an InP
substrate (calculated from a full-wave model). The loss in the
cpw lines was taken into account in the design procedure
and was estimated by extrapolating the data presented in
[13]. A conservative value of 0.67 dB/mm at 60 GHz scaled
with the square root of the frequency was used. The InP
HEMT transistor has a 10 pm gate-width to result in favorable
impedance levels at 150-500 GHz and to fit directly in the
center conductor of the cpw line. This eliminates the need
to model discontinuities in the cpw line at millimeter-wave
frequencies.

Oscillator designs were carried out at frequencies from
150-550 GHz. To obtain a small signal model for the 10-pm
transistor, a larger device with a 50 pum gatewidth was built
and tested to 50 GHz (Fig. 3). The parasitics of the 50-um
device were stripped off and an intrinsic model was obtained
for the 50-pm device. This intrinsic model was mathematically
scaled to obtain the equivalent intrinsic model of the smaller
10-pm device (Fig. 5). The parasitic capacitances and induc-
tances for the 10-um model were determined using quasi-static
techniques and the geometry of the 10um device. Since this
model was derived from measurements on a 50-um device, a

large uncertainty exists in the 10-pm device model parameters.
The parasitic elements Ly, La, Ls, Cpgsy Cpgas and Cpas
associated with the extrinsic contact metalizations are known
to about +4 pH or fF. Also, values of the intrinsic elements
Rgs, Cgsy Rga. Cya, gm, 7. Cas, and g4, are thought to
be accurate to +20%. No independent confirmation of these
estimates could be made since no S-parameter measurements
were made on a 10 um device.

We decided to “bracket” the oscillator designs. Due to
the uncertainty existing in the device model, several designs
were done at each frequency. The cases considered were with
parasitics at their nominal values (Low) and at twice these
values (High). The intrinsic transconductance was also taken
to be either 16 mS (nominal) or 10 mS (low). This resulted
in 16 different designs covering the range of 150-550 GHz.
The idea behind the above choices is that the parasitics at 150
GHz and above will be higher than these predicted by 50-GHz
measurements due to charge accumulation at the edges of the
conductors. The low value of the intrinsic g,, of 10 mS was
chosen because it fits the DC measurements closer than the
small-signal 50-GHz extrapolated value of 16 mS.

IV. MILLIMETER-WAVE MEASUREMENTS

The InP chip containing all the oscillators from 150-550
GHz was positioned on a 2.54-cm-diameter elliptical silicon
substrate lens for testing purposes and dc bias was applied to
the oscillator-under-test using micropositioner dc probes. The
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Fig. 6. Wideband quasi-optical harmonic mixer setup for accurate frequency determination and spectrum measurements.
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Fig. 7. Measured down converted spectrums of the (a) 155- and (b) 213-GHz oscillators.

millimeter-wave signal radiates from the lens to the quasi-
optical measurement setup. There are no critical dimensions
to control for the different test frequencies (oscillators) and
this leads to a very simple test setup. Rough frequency mea-
surements were obtained by aligning the silicon substrate in
front of an InSb hot electron bolometer with an interferometer
and mechanical chopper in the beam path. Two of the designs
were found to oscillate with about 90% yield (Table I). The

150-GHz design case assuming high parasitics and 10 mS
transconductance (150.H.10) oscillated near its design fre-
quency generating an output signal at 155 GHz. The 500-GHz
case assuming high parasitics and 16 mS transconductance
(500.H.16) generated an output at an unexpected frequency
near 213 GHz. The other 14 cases generated no output. This
situation is not surprising considering the large uncertainty
which exists in the 10-pum device model.
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The oscillator frequencies were accurately measured and
their spectrums were observed using a quasi-optical wideband
harmonic mixer setup (Fig. 6). The harmonic mixer uses a
back-to-back Schottky diode at the apex of a wideband log-
periodic antenna. The antenna is placed is placed on a substrate
lens to eliminate power loss to substrate modes. The harmonic
mixer is pumped quasi-optically at 37-50 GHz (LO) thus
resulting in a low conversion loss at 150-200 GHz (RF) [14].
A 45° beam splitter is used as a wideband diplexer for the LO
an RF signal. The diplexer introduces a 3-dB loss in the LO
and RF signal paths, but this is not detrimental for spectrum
measurements. The measured down-converted spectrums of
a 155- and a 213-GHz oscillator are shown in Fig. 7. The
LO frequency was varied to observe both upper and lower
sidebands and different IF frequencies were used to insure
that the harmonic numbers and RF frequencies are correctly
determined. To be certain that the observed signal cortesponds
to the fundamental oscillation frequency, the LO was adjusted
to search for any signals at 1/2 and 1/3 of the oscillator
frequency and no signals were observed.

The oscillator output power was estimated with a quasi-
optical setup using calibrated waveguide diode detectors and a
lock-in amplifier. The slot-oscillator power is determined from
the amplitude of the received signal at the calibrated detector,
the gain of the receiving horn antenna (23 dB), the directivity
of the transmitting slot/lens antenna and by using the Friis
transmission equation. The aperture efficiency of the slot
oscillator on a substrate lens is 40%. This has been determined
earlier from pattern measurements of a single slot antenna on
a silicon substrate lens at 20 GHz [5] and includes the lens-air
reflection loss of 1.9 dB. It is estimated that the maximum error
in the power calculation is 25% with a 15% contribution from
the calibrated waveguide detector and a +10% contribution
from the slot/lens antenna directivity. The total output power
is found to be no less than 10-pW (£25%) for the 155-GHz
oscillator and no less than 1 pW for the 213-GHz oscillator.
The corresponding (minimum) dc to RF efficiencies are 0.13%
at 155 GHz and 0.014% at 215 GHz. The 155-GHz power
measurements are consistent with the fact that the transistor
is very small with only a 10-um gate width. The circuits
were optimized for high loop gain and not maximum power,
and there is a lot of uncertainty in the 10-pm device model.
Also, the associated extrinsic short-circuit current-gain cutoff
frequency (f;) for a 10-um transistor with high parasitics and
low g,,, 1s 135 GHz and the associated extrapolated maximum
oscillation frequency (fmax) is 400 GHz.

V. CONCLUSION

This. paper presents the highest frequency achieved to-date
for a InP millimeter-wave three-terminal device. Additional
time spent on the modeling of these transistors could lead to
better circuit designs that will enable this same technology
to yield osciltators at 300 GHz and above. The inclusion of a
cpw-fed planar slot antenna in the oscillator design enabled the
fabrication of a large number of oscillators on a single InP chip
and resulted in an easy system for testing purposes. A large
number of these devices could be integrated together in quasi-
optical power combining designs at millimeter wave frequen-

cies to generate milliwatt power levels [15]. The successful
development of these monolithic oscillators demonstrates the
high frequency capabilities of the sub-micron gate InP based
HEMT’s which should also find applications as small signal
millimeter-wave and submillimeter-wave amplifiers.
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