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Abstract— We report on the design and measurement of mon-
olithic 155- and 213-GHz quasi-optical oscillators using AII-
nAs/GaInAs/InP HEMT’s. These results are believed to be the

highest frequency three-terminal oscillators reported to date. The
iridium concentration in the channel was 80% for high sheet

charge and mobility. The HEMT gates were fabricated with

self-aligned sub-tenth-micrometer electron-beam techniques to
achieve gate lengths on the order of 50 nm and drain-source
spacing of 0.25 ~m. Planar antennas were integrated into the
fabrication process resulting in a compact and efficient quasi-
optical Monolithic Millimeter-wave Integrated Circuit (MMIC)

oscillator.

I. INTRODUCTION

T HE POTENTIAL of AIInAs/GaInAs High Electron Mo-

bility Transistors (HEMT’s) on InP substrates has been

investigated extensively for low-noise and power applica-

tions at millimeter-wave frequencies (30–100 GHz), and the

recent developments in HEMT materials growth [1], layer

scaling [2], and electron-beam fabrication [3], have resulted

in the fabrication of the world’s highest cutoff frequency

(jt) transistors [4]. We have combined the AIInAs/GaInAs
technology with integrated antennas to build a millimeter-wave

quasi-optical oscillator. The design is based on the coplanar

waveguide (CPW)-fed quasi-optical slot oscillators which has

been investigated by Korrnanyos [5], [6] and Moyer [7]. The

uniplanar circuit requires no via holes and no backing ground

plane and is compatible with the monolithic integration of high

speed transistors. With the uniplanar approach, it is possible to

put the InP oscillator on a high-resistivity silicon dielectric lens

(silicon and InP have similar dielectric constants). The sub-

strate lens simulates an infinite dielectric medium, eliminates

power loss to substrate modes and makes the pattern nearly
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uni-directional [8], Perhaps, the most important advantage of

this approach is that the different designs at 150–550 GHz are

independent of the substrate height and can all be integrated

together on the same chip. This considerably reduces the

fabrication time and cost per oscillator unit. The slot antenna

impedance in this environment is accurately calculated using

the space domain integral equation technique [9], and will

not be discussed in this paper. Using this technique, we

have succeeded in building 155- and 213-GHz oscillators

while the maximum previously reported transistor oscillator

performance has been limited to 131 GHz [10].

II. MATERIALS DEVELOPMENT

AND OSCILLATOR FABRICATION

The epitaxial layers used in this work were grown in a

Riber 2300 molecular-beam epitaxy (MBE) system, typically

at a substrate temperature of 500° C, a growth rate of 600

ndh, and a V/111 beam equivalent pressure ratio of 40. Further

details of these standard growth conditions can be found in

[1]. Fig. 1 shows a diagram of the layer structure of the

MBE material. The growth of the delta-doped, strained layer

structures deviates from the standard conditions in several

ways. The first is a reduction of the substrate temperature

to 320°C, during and after the growth of the delta-doped

layer in order to minimize the surface segregation of silicon

atoms in AlInAs. By controlling the growth temperature in this

fashion, we are able to improve the abruptness of the silicon

profile and achieve an increase of approximately 20–3090 in

electron transfer efficiency [4]. The second modification is

the use of a wider spacer thickness. In order to obtain a

high mobility using delta doping, we increased the spacer

thickness of the delta-doped structures from 2–6 nm. The last,

but most important, is a lower substrate temperature during the

growth of the pseudomorphic channel. We grew this layer at a

substrate temperature of 440°C, as opposed to the standard

500”C, to prevent three-dimensional nucleation and misfit

dislocation production. The resulting sheet charge and mobility

were approximately 2.7 x 1012cm-2 and 13000 cm2/U–S,

respectively.

We employed a self-aligned-gate (SAG) process first pro-

posed by Mishra et cd. [12]. which consists of five levels:
1) alignment marks, 2) device isolation, 3) T-shaped gate

definition, recess, and metalization (Ti/Pt/Au), 4) ohmic def-

inition, metalization (AuGe/Ni/Au) with the T-shaped gate

serving as a shadow mask, and alloying, and finally, 5)

0018–9480/95$04.00 @ 1995 IEEE
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Fig. 3. HEMT short-circuit current gain versus frequency. The measure-
ments are made to 50 GHz and extrapolated thereafter.

lnP Substrate

Fig. 1. Layer structure of the InPMBE material,

Fig, 4, The fabricated InP 155-GHz MMICoscillator. Theslotantenna is to
the left. The dark areas outline the InP substrate,

Fig. 2. Cross-section of 50-nm T-shaped gate.

overlay. We defined the sub-O.l-~m gates in a hi-layer of

PMMA/P(MMA-MAA) electron-beam resist using a Phillips

EBPG-4 electron-beam lithography system operating at 50-kV

acceleration voltage. The resulting drain-to-source spacing is

approximately 0.25 ~m. Fig. 2 shows the cross-section of a

50-nm T-shaped gate after the deposition of the self-aligned

ohmic metal. The addition of the ohmic metal reduces its

resistance from approximately 1500–1 000 O/mm, which is

the lowest resistance ever reported for a 50-nm-long gate

[4]. Typical peak extrinsic transconductance for the final

wafer lot was approximately 1400 mS/mm for a 50-,um
device measured after all the MMIC fabrication steps, with

an associated ext~insic short-circuit current-gain extrapolated

cutoff frequency, j~, of approximately 340 GHz (Fig. 3). The

extrapolated maximum oscillation frequency (~~aX) at – 6

dB/octave for an intrinsic 50-~m device is 740 GHz.

The processing of the circuits begins with the ohmic con-

tacts, other than the device ohmics, which are defined by lifting

off AuGe-Ni-Au metallurgy. Second is the isolation implant,

used to define the active area of the transistors, achieved by

use of boron ions. Next is the self-aligned-gate (SAG) process,

which is described above, followed by the device ohmic step,

wherein the gate itself acts as a mask for the ohmic metal,

also described in the previous section. Next is the perimeter

etch, where we etch down to the InP substrate everywhere

except in the device itself, to provide a very high resistance

dielectric for the slot antenna and the cpw transmission line.

DC biasing of the transistor is made possible by slits in

the ground plane which isolate the gate, drain and source

(see Fig. 4 for the completed MMIC oscillator). These slits

are capacitively bypassed to create an uninterrupted ground

plane for the RF circuit. Following that is the metal overlay,

which defines the device electrodes, the transmission lines, slot

antennas and the ground planes. Then, the capacitor dielectric

layer is formed. The dielectric material is 0.22 ~m of silicon

monoxide (SiO). The post-metal fabrication step then defines

the top plates and, hence, the size of the capacitors. Finally,

the span metal step is used to fabricate the air-bridges from

the capacitors as well as the plated metal on the transmission

lines and ground plane,

III. OSCILLATOR DESIGN

The oscillator design follows the reflection amplifier ap-

proach presented in [12]. Computer optimization is applied

at the source and gate terminals to maximize the reflection

coefficient at the gate of the device which is connected to the

slot antenna. The antenna impedance is used as a parameter

in the oscillator design, and therefore the matching networks
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TABLE I
DESIGN PARAMETERSFORTHE Two SUCCESSFULMONOLITHIC MILLtMETER-WAVE OSCILLATORS.THE VALUES L.~, . . . ARE DEFINED IN FIG. 4

Lp,Cp** gm lj l/s,l
(GF;z) “ (mS) (ii) Jm) (pm) (/%:) (mag,ang) (ma~ang)

150 High 10 239 164.5 230.5 360 0.188, 164.4 0.595, 164
500 High 16 107 86.5 71 70 0.323, -147 0.897, -146.5

are minimized. This results in an oscillator circuit that is

much smaller than a wavelength, typically 400 ~m-sqttare at

150 GHz and 100 ~m-square at 500 GHz. All of the cpw

lines in the oscillator design have a center conductor width of

10 Mm and 5 pm gap giving an impedance of approximately

50 Q and an effective dielectric constant of 6.7 on an InP

substrate (calculated from a full-wave model). The loss in the

cpw lines was taken into account in the design procedure

and was estimated by extrapolating the data presented in

[13]. A conservative value of 0.67 dB/mm at 60 GHz scaled

with the square root of the frequency was used. The InP

HEMT transistor has a 10 pm gate-width to result in favorable

impedance levels at 150–500 GHz and to fit directly in the

center conductor of the cpw line. This eliminates the need

to model discontinuities in the cpw line at millimeter-wave

frequencies.

Oscillator designs were carried out at frequencies from

150–550 GHz. To obtain a small signal model for the 10-~~m

transistor, a larger device with a 50 @m gatewidth was built

and tested to 50 GHz (Fig. 3). The parasitic of the 50-~m

device were stripped off and an intrinsic model was obtained

for the 50-#m device. This intrinsic model was mathematically

scaled to obtain the equivalent intrinsic model of the smaller

10-pm device (Fig. 5). The parasitic capacitances and induc-

tances for the 10-#m model were determined using quasi-static

techniques and the geometry of the 10#m device. Since this

model was derived from measurements on a 50-~m device, a

large uncertainty exists in the 10-~m device model parameters.

The parasitic elements Lg, Ld, L,, Cpg., cp~d, and Cpds

associated with the extrinsic contact metalizations are known

to about +4 pH or fF. Also, values of the intrinsic elements

R Cg,,gs > Rgd , Cg& gm , T, cd., and g& are thought tO

be accurate to +20%. No independent confirmation of these

estimates could be made since no S-parameter measurements

were made on a 10 l,tm device.

We decided to “bracket” the oscillator designs. Due to

the uncertainty existing in the device model, several designs

were done at each frequency. The cases considered were with

parasitic at their nominal values (Low) and at twice these

values (High). The intrinsic transconductance was also taken

to be either 16 mS (nominal) or 10 mS (low). This resulted

in 16 different designs covering the range of 150–550 GHz.
The idea behind the above choices is that the parasitic at 150

GHz and above will be higher than these predicted by 50-GHz

measurements due to charge accumulation at the edges of the

conductors. The low value of the intrinsic gm of 10 mS was

chosen because it fits the DC measurements closer than the

small-signal 50-GHz extrapolated value of 16 mS.

IV. MILLIMETER-WAVE MEASUREMENTS

The InP chip containing all the oscillators from 150-550

GHz was positioned on a 2.54-cm-diameter elliptical silicon

substrate lens for testing purposes and dc bias was applied to

the oscillator-under-test using micropositioner dc probes. The
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millimeter-wave signal radiates from the lens to the quasi-

optical measurement setup. There are no critical dimensions

to control for the different test frequencies (oscillators) and

this leads to a very simple test setup. Rough frequency mea-

surements were obtained by aligning the silicon substrate in

front of an InSb hot electron bolometer with an interferometer

and mechanical chopper in the beam path. Two of the designs

were found to oscillate with about 90% yield (Table I). The

150-GHz design case assuming high parasitic and 10 mS

transconductance ( 150.H. 10) oscillated near its design fre-

quency generating an output signal at 155 GHz. The 500-GHz

case assuming high parasitic and 16 mS transconductance

(500.H. 16) generated an output at an unexpected frequency

near 213 GHz. The other 14 cases generated no output. This

situation is not surprising considering the large uncertainty

which exists in the 10-&m device model.
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The oscillator frequencies were accurately measured and

their spectrums were observed using a quasi-optical wideband

harmonic mixer setup (Fig. 6). The harmonic mixer uses a

back-to-back Schottky diode at the apex of a wideband log-

periodic antenna. The antenna is placed is placed on a substrate

lens to eliminate power loss to substrate modes. The harmonic

mixer is pumped quasi-optically at 37–50 GHz (LO) thus

resulting in a low conversion loss at 150–200 GHz (RF) [14].

A 45° beam splitter is used as a wideband diplexer for the LO

an RF signal. The diplexer introduces a 3-dB loss in the LO

and RF signal paths, but this is not detrimental for, spectrum

measurements. The measured down-converted spectrums of

a 155- and a 213-GHz oscillator are shown in Fig. 7. The

LO frequency was varied to observe both upper and lower

sidebands and different IF frequencies were used to insure

that the harmonic numbers and RF frequencies are correctly

determined. To be certain that the observed signal corresponds

to the fundamental oscillation frequency, the LO was adjusted

to search for any signals at 1/2 and 1/3 of the oscillator

frequency and no signals were observed.

The oscillator output power was estimated with a quasi-

optical setup using calibrated waveguide diode detectors and a

lock-in amplifier, The slot-oscillator power is determined from

the amplitude of the received signal at the calibrated detector,

the gain of the receiving horn antenna (23 dB), the directivity

of the transmitting slotilens antenna and by using the Friis

transmission equation. The aperture efficiency of the slot

oscillator on a substrate lens is 4090. This has been determined

earlier from pattern measurements of a single slot antenna on

a silicon substrate lens at 20 GHz [5] and includes the lens-air

reflection loss of 1.9 dB. It is estimated that the maximum error

in the power calculation is 2.5% with a 15% contribution from

the calibrated waveguide detector and a +10% contribution

from the slotiens antenna directivity. The total output power

is found to be no less than 10-pW (+25%) for the 155-GHz

oscillator and no less than 1 pW for the 2 13-GHz oscillator.

The corresponding (minimum) dc to RF efficiencies are O.13%

at 155 GHz and 0.014’% at 215 GHz. The 155-GHz power

measurements are consistent with the fact that the transistor

is very small with only a 10-pm gate width. The circuits

were optimized for high loop gain and not maximum power,

and there is a lot of uncertainty in the 10-&m device model.

Also, the associated extrinsic short-circuit current-gain cutoff

frequency (ji) for a 10-#m transistor with high parasitic and

low gm is 135 GHz and the associated extrapolated maximum

oscillation frequency (f~ax) is 400 GHz.

V. CONCLUSION

This paper presents the highest frequency achieved to-date

for a InP millimeter-wave three-terminal device. Additional

time spent on the modeling of these transistors could lead to

better circuit designs that will enable this same technology

to yield oscillators at 300 GHz and above. The inclusion of a

cpw-fed planar slot antenna in the oscillator design enabled the

fabrication of a large number of oscillators on a single InP chip

and resulted in an easy system for testing purposes. A large

number of these devices could be integrated together in quasi-

optical power combining designs at millimeter wave frequen-

cies to generate milliwatt power levels [15]. The successful

development of these monolithic oscillators demonstrates the

high frequency capabilities of the sub-micron gate InP based

HEMT’s which should also find applications as small signal

millimeter-wave and submillimeter-wave amplifiers.
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